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Summary Statement 

Initial emergency department chest radiography and clinical variables of patients with coronavirus disease 

2019 were used to train a deep learning classification algorithm to predict clinical outcomes. 

 

 

Key Points​: 

■ A deep learning algorithm prognosticated 30-day intubation and death trained on only routine chest 

radiograph (intubation area under the receiver operating curve [AUC] 0.66, death AUC 0.59) or clinical 

laboratory values (intubation AUC 0.64, death AUC 0.59) better than a naïve classifier. 

■ Performance of prediction of intubation (AUC, 0.88) and death (AUC, 0.82) increased when the model was 

trained with initial chest radiograph ​and​ relevant clinical variables from electronic health records acquired 

exclusively from the emergency department encounter. 

■ The model, despite training with only young patients aged 21 to 50, generalized to a pseudo-prospective test 

set that also contained older patients aged greater than 50. 

 

Abbreviations  

AUC = area under the receiver operating characteristic curve, COVID-19 = coronavirus disease 2019, DL = 

deep learning, ED = emergency department 

 
 
 



Abstract 
Purpose​: To train a deep learning classification algorithm to predict chest radiography severity scores and 

clinical outcomes in patients with coronavirus disease 2019 (COVID-19). 

Materials and Methods​: In this retrospective cohort study, we identified patients of ages of 21 to 50 who 

presented to the emergency department (ED) of a multicenter urban health system from March 10 - 26, 2020 

with COVID-19 confirmation on real-time reverse transcription polymerase chain reaction. We collected the 

initial chest radiographs (CXRs), clinical variables, and outcomes including admission, intubation, and survival 

within 30 days (​n ​= 338; median age 39; 210 men). Two fellowship-trained cardiothoracic radiologists 

examined CXRs for opacities and assigned a clinically validated severity score. We trained a deep learning 

algorithm to predict outcomes on a holdout test set composed of confirmed COVID-19 patients who presented 

from March 27 - 29, 2020 (​n ​= 161; median age 60; 98 men) for both younger (ages 21-50; ​n ​= 51) and older 

(ages > 50; ​n ​= 110) populations. Bootstrapping methods computed confidence intervals. 

Results​: The model trained on the CXR severity score produced the following areas under the receiver 

operating characteristic (AUCs): 0.80 (0.73,0.88) for the CXR severity score, 0.76 (0.68,0.84) for admission, 

0.66 (0.56,0.75) for intubation, and 0.59 (0.49,0.69) for death. The model trained on clinical variables produced 

the following AUCs 0.64 (0.55,0.73) for intubation and 0.59 (0.50,0.68) for death. Combining CXR and clinical 

variables increased AUC of intubation and death to 0.86 (0.79,0.96) and 0.82 (0.72,0.91), respectively. 

Conclusion​: Combination of imaging and clinical information improves outcome predictions.  

 

  



Introduction 
Artificial intelligence has demonstrated promise in facilitating triage in radiology departments due to its 

ability to rapidly extract key features from imaging studies and perform high-throughput analysis, especially in 

institutions with high volumes of disease.​1​ Prior studies have evaluated its clinical value in screening for or 

diagnosing coronavirus disease 2019 (COVID-19) predominantly when employed using chest CT.​2–4​  In clinical 

practice, however, chest radiography (CXR) is the primary and often only imaging modality that is obtained for 

patients with COVID-19, particularly in health systems with limited resources.​5​ Although the value of CXR in 

diagnosing COVID-19 might be limited by its reported low sensitivity, it may be useful in the prognostication of 

COVID-19 positive patients.​6–8  

Deep learning (DL) is a type of artificial intelligence in which data is processed iteratively through 

multi-layered neural networks to automatically extract high level features from raw data input. This recursive 

method allows for programs to discern patterns without explicit human guidance.​9​ Recently, a DL algorithm has 

been reported to accurately predict long-term outcomes from single CXRs from patients with prostate, lung, 

colorectal, and ovarian cancer.​10​ Another cohort from Italy showed data that supported the role of CXR as a 

first-line triage tool in ​predicting mild disease course of COVID-19, as defined by no need for inpatient 

hospitalization or inpatient hospitalization of less than 4 days duration without need for assisted ventilation​.​11 

There is a growing body of literature in using CXR that showed increased severity was associated with worse 

outcomes for all patients.​12​ Some DL algorithms incorporating CT and CXR data have been used to aid in 

screening and diagnosis of COVID-19, and one study used CT to predict poor prognostic outcomes in patients 

with COVID-19.​2,13–15​ Recently, a model that predicts a “Pulmonary X-ray Severity score” based on CXRs from 

patients with COVID-19 was published.​16​ Nonetheless, the potential of DL algorithms, especially those that 

have been trained with CXRs from patients with COVID-19 and clinically validated severity scores provided by 

expert radiologists, to directly predict clinical outcomes and to aid in prognostication and risk-stratification 

based on only the CXR image as input has been largely unexplored.​8​ In fact, many currently published 

prognostication algorithms use only clinical variables and do not use imaging data as input or use only CT, a 

modality less widely available and less frequently obtained than CXR.​17–19 

The presence of comorbidities such as lung and heart disease can potentially confound CXR interpretation 

of patients with COVID-19 pneumonia, which may decrease the predictive ability of DL.​20​ In this context, 
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therefore, the generation of predictive CXR interpretations may be more valid in patients under 50 years of 

age, who have a lower prevalence of such conditions. While COVID-19 affects all ages, the younger population 

still comprises a considerable proportion of affected patients.​21​ Thus, testing for generalizability of 

prognostication algorithms for patients with COVID-19 is important for deployment of DL to appropriate patient 

populations. 

In this study, ​we propose a proof of concept model aimed to demonstrate that a DL algorithm can take only 

the initial CXR, an imaging study that the emergency department (ED) clinicians do not routinely use as the 

main determinant of hospitalization,​ ​and the clinical variables from the ED to prognosticate the outcomes​ of 

patients with COVID-19.​8​ We compared the performance of the model trained on CXR ​or​ clinical variables 

alone to that of the model trained on ​both​ CXR and clinical variables evaluate individual contribution of CXR or 

clinical variables to the prognostication and to test for potential synergistic effect of combining the two types of 

inputs. To do so, we used a DL classification algorithm previously used to predict 14 different pathologies, 

including pneumonia, on CXRs.​22​ We hypothesized that training the convolutional neural network with image 

input and the associated CXR severity score, which was previously reported and validated in Toussie et al, is 

as effective as training with the image input and the associated clinical outcome of admission as labels.​8​ We 

then tested this model to generate a model severity score that is distinct from the expert radiologist generated 

severity score, using only the image data input on an unseen test set of patients of all ages, including patients 

aged greater than 50, who presented at different time points to predict admission, intubation, and mortality. We 

also supplemented the model with standard lab tests available at the initial ED encounter to increase the model 

performance.  

Materials and Methods 

Patient Selection 

To collect the patient cohort for this institutional review board approved retrospective cohort study with 

waived written consent,​ we used ​the MONTAGE™ ​Search and Analytics Platform and extracted radiology 

information system data from all CXR examinations performed in the ED setting from March 10 - 29, 2020 in 

three hospitals in New York City with different radiography acquisition devices (​Table 1​). We removed any 

protected health information from the patient data for analysis and obtained HIPAA approval. Using the 

obtained cohort, we then extracted relevant clinical and laboratory data from the electronic medical record 
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(EMR). The resulting radiology information system dataset contained 4738 ED encounters. The exclusion 

criteria included greater than 50 or less than 21 years of age (​n​ = 3163), duplicate CXR of the same patient (​n 

= 81), patients with unconfirmed COVID-19 ​real-time reverse transcription polymerase chain reaction​ positivity 

(​n​ = 1101), presentations unrelated to COVID-19 (​n​ = 2), unevaluable CXR (​n ​= 1), and inaccessible clinical 

data (​n ​= 1). All 338 patients from the original Toussie et al. clinical study from ​Radiology​ were included in the 

train and the validation dataset.​8​ We used the data to train a prognostication DL algorithm, a different purpose 

and outcome assessment from those of the original clinical study in which expert radiologists scored the CXR 

directly.  

We randomly assigned the included CXRs from March 10 - 26 (​n​ = 338) to either the training set (​n ​= 283; 

84%) or the validation set (​n ​= 55; 16%) for the DL model. In the training set, 73.5% (208 of 283) of the 

radiographs were acquired portably with anteroposterior views and 26.5% (75 of 283) were acquired with 

posteroanterior and lateral views. In the validation set, 76.4% (42 of 55) radiographs were acquired with 

portable anteroposterior views and 23.6% (13 of 55) with posteroanterior and lateral views. We used only 

frontal radiographs for model training. The included CXRs from March 27 - 29, 2020 (​n ​= 51) were assigned ​to 

compile a held out test set from a different time period (​Figure 1​). There were a total of 161 patients included 

within the test set. A total of 51 of these patients were between the ages of 21 and 50 years, while 110 patients 

were aged greater than 50 years. These 110 patients were added to test for the generalizability of the model in 

older patients at a greater risk. Within the test set of patients aged 21-50 years (​n​ =51)​, ​68.6% (35 of 51) 

radiographs were acquired with portable anteroposterior views and 31.4% (16 of 51) posteroanterior and 

lateral views. Within the test set of patients aged greater than 50 years (​n​ = 110), 96 (87.3%) radiographs were 

acquired with portable anteroposterior views and 14 (12.7%) with posteroanterior and lateral views (​Table 2)​. 

We used only frontal radiographs for model inference. 

Data Collection  

Two fellowship-trained cardiothoracic radiologists, blinded to patient history other than COVID-19 positivity, 

independently examined the initial CXR for opacities to generate a total severity score (CE with 26 years of 

experience and SG with 1 year of experience). Each lung was divided into three zones - upper, middle, and 

lower zones - and a binary score of 0 (no opacity) or 1 (opacity) was assigned to each lung zone (​Figure E1 
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[supplement]​).​8​ For model training, only the lung zones that both radiologists agreed to contain opacity was 

given the final opacity label (score of 1); otherwise, the lung zones were noted as normal (score of 0). CXRs 

with scores of 2 or above (out of 6) were categorized as severe for purposes of the training algorithm. Any 

admission, intubation, or death in the 30 day follow-up was categorized as a positive event.  

Model Architecture and Training 

We stripped the raw images of any metadata for de-identification. We resized and center cropped the 

radiographs to 1024 x 1024 resolution. The authors visually inspected all radiographs after cropping which 

standardized input size and removed any texts that were embedded in the edges of some radiographs (eg time 

of acquisition). The images were subsequently converted to tensors and normalized with the ImageNet mean 

and standard deviation. They were stored as HDF5 datasets to prevent the need to preprocess the images for 

each iteration of training. For the prediction algorithm, we used the DenseNet-121 architecture that was first 

pre-trained on ImageNet, a model previously used in the CheXNet study.​22–24​ We used two different labeling 

schemes for the training​:​ ​(a)​ radiographs with the associated expert generated severity scores as labels or ​(b) 

radiographs with the associated admission status as labels as a control. The DenseNet-121 output was then 

compiled by a fully connected layer and a sigmoid function to generate a probability score for the label (ie 

severe, not severe or admitted, or not admitted). We used the binary cross entropy loss function and the Adam 

optimizer (​Figure 2​).​25​ We empirically tested for the best learning rate from 1 x 10​-2​ to 1 x 10​-10​ in logarithmic 

increments (1 x 10​-2​, 1 x 10​-3​, … , 1 x 10​-10​) and determined the best learning rate as one that resulted in the 

lowest validation loss after 10 epochs of training. 

We also tested how the model performance would change with the addition of the following clinical 

variables initially acquired in the ED from electronic health records: C-reactive protein, white blood cell count, 

D-dimer, lactate, lactate dehydrogenase, creatinine, eGFR, troponin, aspartate aminotransferase, glucose, 

systolic and diastolic blood pressures. We used mean imputation for any unavailable lab values. For model 

training with clinical variables alone, we used fully connected layers. For model training with both CXR and 

clinical variables, the clinical variables were concatenated and added as input before the fully connected layer 

in the classification layer of the DenseNet-121 model previously trained on CXR and its severity score from 

above (​Figure 2​).  

Model Evaluation 
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We selected the model from the training with either the CXR severity score or the admission status with the 

minimum validation set loss as the best model to test. The probability score output, a continuous floating point 

value from 0 to 1 and distinct from the ordinal, integer grading score from expert radiologists, from the DL 

algorithm based on only the CXR image as input was used to calculate the area under the receiver operator 

characteristic curve (AUCs) for four different classes: CXR severity scores, admissions, intubations, and 

deaths. For example, ​a DL algorithm generated score above .65 predicts admission, above .80 predicts 

intubation, and above .90 predicts death.​ To account for variable prevalence among classes, we designated 

classes that had a prevalence greater than or equal to 40% in our cohort as “majority class” while those with a 

prevalence lower than 40% were designated as “minority class”. Severe CXRs and admissions were thereby 

majority classes while intubation and death were minority classes.  We then plotted the precision-recall (PR) 

curve to evaluate the model performance for minority classes which were not used as part of the training. We 

used the discriminative localization methods previously described to generate heatmaps that describe which 

parts of the radiographs were contributing the most to the prediction algorithm.​26,27​ The source code used in 

this paper is publicly available at ​https://github.com/aisinai/covid19_cxr​. 

 

Statistical Analysis 

Bivariate analysis of continuous variables, such as body mass index and age, was performed using the 

Kruskal-Wallis H Test. Bivariate analysis of categorical variables such as patient race, patient sex, smoking 

history, hospital site, and comorbidities was performed using chi-squared test.  

To calculate the AUC, accuracy, precision, recall, and F1-score values, an operating point was selected for 

high sensitivity (recall), which was then used for accuracy and F1 score calculations. To calculate 95% CIs for 

AUC, accuracy, precision, recall, and F1-score values, we used bootstrapping experiments as previously 

described.​28–30​ We resampled the test set with replacement and repeated the inference 100,000 times. The 

resampled test set was the same size as the original test set (​n ​= 161) because we are approximating the 

variation of the statistic that depends on the sample size. We compared the computed statistics with those of a 

naive classifier that predicts the positive class every time (ie. the naive model always predicts severe CXR, 

30-day admission, intubation, and death).  
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Results 

Patient Demographics 

Overall, 499 patients and their CXRs were used between the training, validation, and test sets with a 

diverse patient population. Of all 499 CXRs that were scored, 41 CXRs (8.2%) had severity scores 2 or above 

given by one of the two reviewers but not when the severity score was calculated with concordant scores. The 

remaining 458 CXRs (91.8%) had been correctly categorized as severe (scores 2 or above) or not severe 

(scores 0 or 1) by both reviewers individually and by concordant scores. Of the 499 patients (median age, 42 

years [interquartile range, 34-50]; 308 men), 248 (49.7%) had severe CXRs, 271 (54.3%) were admitted, 73 

(14.8%) were intubated, and 51 (10.2%) expired. Additionally, there were 53 (10.6%) with asthma, 3 (0.6%) 

with COPD, 105 (21.0%) with hypertension, 73 (14.6%) with diabetes mellitus, 7 (1.4%) with HIV, 18 (3.6%) 

with cancer, 23 (4.6%) with chronic kidney disease, 25 (5.0%) with coronary artery disease, and 5 (1%) with 

atrial fibrillation. The datasets differed significantly with regards to age (due to inclusion of patients aged 

greater than 50 in the test set) and body mass index (​P​ = .01, ​Table 1​). Otherwise, there were no significant 

differences in the distribution of demographic information between the training, validation, and test sets. For 

patients who were intubated, there time from initial CXR to intubation had an average of 3.7 days and a 

median of 3 days (range: 0 to 12 days).  

The training, validation, and test datasets consisted of 283, 55, and 161 patients, respectively. Severe 

CXR, admission, intubation, and death data for these datasets are found in ​Table 2. ​The subset of the test set 

of 51 patients aged 21 to 50 years had 34 (66.7%) severe CXRs, 34 (66.7%) admissions, 10 (19.6%) 

intubations, and seven (13.7%) deaths (​Table 2​). Of the 499 CXRs that were scored, 41 CXRs (8.2%) had 

severity scores 2 or above given by one of the two reviewers but not when the severity score was calculated 

with concordant scores. The remaining 458 CXRs (91.8%) had been correctly categorized as severe (scores 2 

or above) or not severe (scores 0 or 1) by both reviewers individually and by concordant scores. 

Model Training 

Empirical search and determination of the best learning hyperparameters showed that the validation loss 

was lowest with the learning rate of 1 x 10​-5​, the b1 decay 0.99, b2 decay 0.9999, and weight decay 1 x 10​-5 

after 10 epochs of training. Both training with the CXR severity scores or the admission status converged to the 

best model as evaluated by the validation loss (​Figure E2 [supplement]​). Initially, iterations of training 



demonstrated low AUC for predicting death in the validation set, but increased with additional iterations 

(​Figure E2 [supplement]​). 

Prediction of Independent Clinical Outcome Variables 

After selection of the best model based on the minimum validation loss (​Figure E2 [supplement]​), we 

used the held-out, previously unseen test set to produce prediction outputs. The single prediction output from 

each of the two models, the model trained with CXR severity scores or the model trained with admissions, was 

then used to generate AUC values for the CXR severity scores and the three clinical variables: any admission, 

intubation, or death event in 30 days. Both models gave satisfactory AUCs. The model trained on the CXR 

severity score produced the following AUCs: 0.80 (95% CI: 0.73, 0.88) for CXR severity score, 0.76 (0.68, 

0.84) for admission, 0.66 (0.56, 0.75) for intubation, and 0.59 (0.49, 0.69) for death (​Figure 3​). Notably, the 

lower bound of the 95% CI for 30-day intubation prediction (0.56, 0.75) was greater than 0.5, the expected 

performance of a classifier without discriminative abilities. The model trained on the admission status produced 

the following AUCs: 0.70 for CXR severity score, 0.70 for admission, 0.58 for intubation, and 0.50 for death. 

These AUCs did not significantly differ when trained with radiographs and severity scores as labels or 30-day 

admission status as labels (​Figure 3​).  

The precision-recall (positive predictive value - sensitivity) curve suggests that the performance was better 

on majority classes (CXR severity score and admission status) than on minority classes (intubation status and 

death). The accuracy on predicting 30-day intubation status (47%; 95% CI: 39, 54) and death (42%; 95% CI: 

34, 50) was nonetheless better than a naive classifier that always predicts the positive class (30% and 26% for 

30-day intubation and death, respectively) (​Table 3​, ​Figure 4​). Further, the performance of negative predictive 

value and specificity (ie precision for the minority class) was better at predicting lack of intubation or survival 

than a naive classifier (​Figure E3 [supplement]​). 

The model performance on the prediction on intubation and death increased when trained with clinical 

variables from electronic health records and with intubation status as the target label (​Figure 5​). AUC 

increased from 0.66 to 0.88 (95% CI: 0.79, 0.96) for intubation, and from 0.59 to 0.82 (95% CI: 0.72, 0.91) for 

death for the aggregate test dataset with all adults aged greater than 21 years. The combined model 

performed better than the model trained on clinical variables alone as well. As expected, the model performed 

better for the young adults aged 21-50 years, but still demonstrated clinically useful results for the older 



patients aged greater than 50 years in the test set. At our selected operating point for intubation that prioritizes 

recall or sensitivity greater than 80%, F1-score still remains high above 65%.  

The heatmap results indicate that the inferior left of the patient’s chest anatomy (right side of the 

radiograph) that contains the heart and the gastric bubble contribute less to the radiograph compared to the 

rest of the radiograph. The absolute value of the model output (given as a probability) increases with worse 

clinical outcomes (​Figure 6​). 

Discussion 

We hypothesized that a DL model could predict prognosis of adult patients with COVID-19 based solely on 

routinely available imaging (CXR) and laboratory studies in the ED. We initially selected a younger patient 

cohort to reduce the potential presence of comorbidities that could decrease the predictive ability of our DL 

algorithm.​20​ We then included additional patients aged greater than 50 in the test set to assess for the 

generalizability of the model in older, higher-risk patients. Using a previously successful DL classification 

algorithm, DenseNet-121, we trained the model successfully with the CXR and the associated severity score or 

the 30 day admission status. This trained model could then take unseen CXR from another time period to 

predict the 30 day admission status, intubation status, and survival, despite the differences of patient age and 

outcomes in the test set compared to that of the training and validation sets. We also trained a model with 

clinical variables alone and compared the models trained on either CXR or clinical variables only to a model 

trained with both CXR and clinical variables. The combined model had the best performance. 

Fine et al surveyed ED physicians as to what factors guide their decisions on whether to admit or discharge 

a patient with community acquired pneumonia and found that chest radiography is not a major factor in the 

decision making process.​31​ Furthermore, CURB-65 and the Pneumonia Severity Index—the most widely used 

scoring systems to guide decisions on admitting patients with community acquired pneumonia—exclude chest 

radiographs as major or minor criteria.​32​ However, Toussie et al demonstrated that the severity of opacities on 

chest radiographs does predict outcomes in COVID-19 pneumonia.​8​ The severity of opacity on the 

presentation chest radiograph is an important objective assessment of the severity of disease that can be used 

to guide physician decisions on whether a patient needs to be admitted or can safely be discharged and 

managed at home. We used CXRs and the associated scores provided by expert radiologists to train a model 
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that requires only the initial radiograph to predict clinical outcomes for test populations of COVID-19 positive 

patients. While COVID-19 is still rapidly spreading across the United States and overwhelming hospitals, a 

quick tool that can provide accurate prognostication for COVID-19 can help appropriately allocate resources 

(eg inpatient hospital beds, ventilators) for subsequent management is vital.  

The advantage of the design within this study lies in the ability for a DL model to predict clinical outcomes 

rather than screening for or confirming a diagnosis of COVID-19, as seen in other studies.​5,7,33–36​ The 

radiographs in the training and testing sets come from multiple hospitals across three boroughs of New York 

City, all with different acquisition devices. The diversity of the CXRs used in the model and the different time 

frame of the test cohort (ie a pseudo-prospective trial) suggest a higher likelihood of generalizability. While 

surveys of ED physicians do not typically report CXR findings as a major factor in the decision making process 

to admit a patient with community acquired pneumonia, this algorithm can reliably predict 30-day admission 

status in COVID-19 patients and may serve as a first-pass triaging process to alert radiologists and clinicians 

of higher-risk patients who will likely require hospitalization.​31​ This prioritization of care can be readily adopted 

within existing clinical workflows and lead to validation in actual clinical practice, thereby addressing the 

common challenges and criticisms of existing artificial intelligence research in medicine.​37,38   

This study confirms that the CXR severity score can be used to train a network that predicts clinical 

outcomes, including need for hospitalization, intubation, and mortality. There are multiple benefits of using the 

initial CXR severity score rather than the outcome of interest in the prediction model. Firstly, the model post 

deployment requires only the initial CXR to provide prognostic predictions without any additional manual 

scoring inputs or clinical variables. From a developer’s perspective, training a model using 30-day outcomes 

relies on the ability to follow all patients for 30 days, and some patients may be lost to follow-up after the initial 

ED encounter. Since the severity score is assigned to all initial CXRs from the ED, there is no need for a 

30-day follow-up. Additionally, the CXR scores can be incorporated into the model without having to wait 30 

days to confirm the absence of an admission event. It is possible that the patients are admitted for other 

non-respiratory reasons, whereas the severity score that indicates opacity in CXR lung zones more directly 

correlates to potential intubation. Therefore, the dataset can be expanded immediately with the widespread 

availability of the CXR and the initial lab values from the ED. Most importantly, the algorithm outputs similar 
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AUCs for the severity score and clinical outcomes (30-day admission, intubation, and death) in unseen test 

radiographs whether it is trained with either the severity scores or the clinical outcomes. 

The precision and recall of the predictions, based on CXR alone, for intubation and death did not have as 

high of performance as those for CXR severity scores and admission because of the relative scarcity of these 

events. Nonetheless, this model still predicted better than a naive classifier and had a better prediction 

performance for the negative class (ie better negative predictive values and specificity). ​Our study confirms 

Toussie et al. study that the findings from the initial CXR obtained in the ED contains information that will 

enable physicians to better predict need for hospitalization and help ensure the appropriate patients are 

admitted versus discharged.​8​ ​The model trained only on CXR had similar AUCs for intubation and death 

prediction as those of the model trained only with clinical variables ​first obtained from the ED​. The model 

trained only with clinical variables had a low true positive rate and high false positive rate at high cutoffs (left 

side of receiver operator characteristic curve, ​Figure 5​). That is, with clinical variables alone that may be 

limited in availability within days of the initial ED encounter, the model cannot sufficiently separate patients who 

require intubation at high cutoff thresholds. ​We improved the performance of prediction of intubation and death 

when both inputs and the same respective architectures to extract information were combined into a single 

model​. Our model, which uses ​only the information from the initial ED encounter from standard imaging and 

routinely ordered lab tests,​ may be used to help guide hospitalization decisions of patients with COVID-19 and 

inform ED physicians on the risks of their patients developing poor outcomes later in the disease course. The 

timeline to prognostication is clinically relevant, given that our patient cohort that required intubation had a 

median of 3 days from the first CXR to intubation. 

The difficulty in understanding logical reasoning of DL algorithms, especially those that predict prognostics, 

is an inherent challenge known as the “black box” problem.​37–39​ We used heatmaps to ensure that appropriate 

regions of the radiographs were contributing to the final prediction output. The heatmaps suggested that the 

irrelevant parts of the radiograph were not contributing significantly to the final output. Of note, heatmaps do 

not indicate which anatomical regions and their qualities are truly contributing to the prediction. Further, the 

regions generated by the heatmaps may be of different sizes than the actual subregion containing the key 

clinical finding due to the convolution architecture of the DL algorithm. Nonetheless, we have planned future 
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studies with additional patients and clinical variables that can help demonstrate both reproducibility and 

interpretability. 

Many AI algorithms that show promising predictive performance do not become integrated into the clinical 

workflow.​40,41​ The authors are part of the COVID Informatics Center in our institution. One of the goals of the 

center is to deploy these tools in the hospital and integrate them with all available data sources including 

electronic health records, such as EPIC. Our informatic center works directly with both the clinical and the 

electronic health record staff in our hospital system, and our algorithm was developed with the intention of 

deployment from the beginning. ​As a follow up study, we are currently investigating the addition of time-course 

clinical data to the model and are collaborating with potential external contributors. Expansion of the model 

with longitudinal data and collaboration with external institutes will further generalize the model to a different 

cohort of admitted patients who may have more clinical lab values collected over the course of their 

hospitalization, a different cohort from this study’s initially presenting patients in the ED. The current method 

presented in this study could form the foundation of incorporating widely available CXRs as inputs to more 

robust prognostication algorithms for determining outcomes in patients with COVID-19.  

There are potential challenges to the generalization of this algorithm to the general population. This model 

did not include patients that did not have real-time reverse transcription polymerase chain reaction confirmed 

COVID-19 in either the training or the test cohort. Thus, this model is inappropriate for prediction of COVID-19, 

when diagnostic testing is not immediately available. This model was trained on only COVID-19 positive 

patients aged 21 and 50 years who were presumed to have lower occurrences of comorbidities. Nonetheless, 

our test dataset was diverse as it contained patients with COVID-19 of all ages greater than 21 years that 

included older, higher at-risk patients. Further, our dataset contains data from three hospitals that each use 

different acquisition devices and a large proportion of portable anteroposterior CXRs, a technique that is 

typically inferior to ​posteroanterior and lateral views​, but nonetheless sufficient. We also tested our algorithm 

on an unseen patient cohort at a later time point from multiple hospitals that represent diversity of key patient 

demographics from New York City. We recognize that 499 total CXRs included in this study is likely too few for 

general deployment of our algorithm, and thus we are currently acquiring data from similar patient cohorts at 

external institutions to further validate our algorithm. Nonetheless, the significant increase in performance of 

https://paperpile.com/c/t2iaTN/48laA+1RPbC


our DL model using both CXR and clinical variable data can help inform future prognostication algorithm 

development. 

In summary, we have created a proof-of-concept DL algorithm that was able to predict key clinical 

outcomes of adult patients with COVID-19 with only the routinely obtained CXR and laboratory studies initially 

acquired in the ED. In doing so, this model validated a CXR severity score that can be used to predict clinical 

outcomes without any additional clinical variables as inputs. Combining CXR and clinical variables available 

exclusively from the ED had the best model performance on predicting intubation and death, better than the 

models trained on either CXR or clinical variables alone. Future work that incorporates additional radiographs 

and clinical variables acquired at future time points into training the network should further improve the 

predictive performance. Combination of both imaging and clinical data can help predict clinical outcomes, 

rather than the presence of COVID-19 itself, and can help triage patients for the best patient care. 
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Tables 

Table 1. ​Patient Characteristics from the Training, Validation, and Test Datasets 

 

Note.— ​Continuous variables shown as mean (interquartile range) and categorical variables are shown as 

number of patients (percentage). BMI = body mass index 

  

 Overall Training Validation Test P ​value 

Total 499 283 55 161 NA 
Men(%) 308 (62) 174 (62) 36 (65) 98 (61) .83 

Age, years 42 (34, 50) 38 (31, 45) 41 (35, 44) 60 (46, 70) < .001 
Race (%)      

    White 99 (20) 59 (21) 12 (22) 28 (17) 

.1 

    Asian 43 (9) 28 (10) 2 (4) 13 (8) 

    Black 114 (23) 65 (23) 13 (24) 36 (22) 

    Hispanic 161 (32) 95 (34) 21 (38) 45 (28) 

    Other or unknown 82 (16) 36 (13) 7 (13) 39 (24) 

BMI 29 (24, 36) 29 (24, 36) 32 (26, 39) 28 (24, 32) .01 

BMI Cutoffs (%)      
    Normal 135 (29) 81 (28) 11 (20) 43 (33) 

.01 
    Overweight 126 (27) 78 (27) 11 (20) 37 (28) 
    Mild or moderate 
obesity 138 (28) 74 (26) 20 (36) 44 (33) 

    Severe obesity 71 (14) 50 (18) 13 (24) 8 (6) 

Smoker (%)      

    No 327 (66) 186 (66) 37 (67) 104 (65) 

.15 
    Former 58 (12) 25 (9) 5 (9) 28 (17) 

    Other or unknown 86 (17) 54 (19) 10 (18) 22 (13) 
    Yes 28 (6) 18 (6) 3 (6) 7 (4) 

Site (%)      
    Manhattan 201 (40) 118 (42) 25 (46) 58 (36) 

.39 

    Brooklyn 154 (31) 90 (32) 12 (22) 52 (32) 
    Queens 144 (29) 75 (27) 18 (33) 51 (32) 



 
Table 2. ​Distribution of Imaging Modality, Severe CXR, and Clinical Outcomes.  
 

Note.— ​Only frontal views from posteroanterior (PA) and lateral acquisitions were used for training. The test 

set includes 110 patients that were aged greater than 50 years of age. CXR = chest radiograph 

* The 30-day intubation value in the test set excludes five patients aged greater than 50 who were indicated as 

“Do Not Intubate”.   

 Total (​n ​= 499) Training (​n ​= 283) Validation (​n ​= 55) Test (​n ​= 161) 

Modality     

   Portable 381 (76.4%) 208 (73.5%) 42 (76.4%) 131 (81.4%) 

   PA and Lat 118 (23.6%) 75 (26.5%) 13 (23.6%) 30 (18.6%) 

Severe CXR Score 248 (49.7%)  111 (39.2%) 27 (49.1%) 110 (68.3%) 

30-day Admission 271 (54.3%) 121 (42.8%) 27 (49.1%) 123 (76.4%) 

30-day Intubation 73* (14.8%) 20 (7.1%) 7 (12.7%) 46* (29.5%) 

30-day Mortality 51 (10.2%) 8 (2.8%) 2 (3.6%) 41 (25.5%) 



Table 3.​ Accuracy, precision (positive predictive value), recall (sensitivity), and the F1 Score for the test set as 

an aggregate and as subgroups for patients aged 21 to 50 or aged greater than 50. All values are percentages 

(95% CI).  

  

 All patients (​n ​= 161) Patients aged 21-50 (​n ​= 51) Patients aged > 50 (​n ​= 110) 

 
Naive 

Classifier 
Trained on 

Scores 
Trained on 
Admissions 

Naive 
Classifier 

Trained on 
Scores 

Trained on 
Admissions 

Naive 
Classifi

er 
Trained on 

Scores 
Trained on 
Admissions 

A. Accuracy 
Severity 
Score 68 78 (70, 83) 73 (66, 80) 71 86 (81, 91) 78 (72, 84) 67 74 (66, 80) 71 (64, 78) 

Admission 
Status 76 77 (70, 83) 74 (67, 81) 67 90 (86, 94) 78 (72, 84) 81 66 (59, 73) 72 (65, 79) 
Intubation 
Status 30 47 (39, 54) 49 (41, 57) 20 47 (39, 55) 49 (41, 57) 34 47 (39, 54) 49 (41, 56) 

Death 26 42 (34, 50) 42 (34, 49) 14 45 (37, 53) 47 (40, 55) 31 40 (32, 48) 39 (32, 47) 
B. Precision 

Severity 
Score 68 80 (73, 87) 78 (70, 85) 71 91 (86, 96) 86 (79, 92) 67 76 (68, 83) 74 (64, 78) 
Admission 
Status 76 85 (79, 91) 83 (77, 90) 67 91 (86, 96) 83 (75, 90) 81 82 (75, 88) 84 (77, 90) 

Intubation 
Status 30 34 (26, 43) 34 (25, 43) 20 26 (18, 34) 25 (17, 34) 34 38 (29, 46) 38 (29, 47) 
Death 26 27 (19, 35) 25 (17, 34) 14 20 (13, 28) 19 (12, 27) 31 30 (22, 39) 28 (20, 37) 

C. Recall 
Severity 
Score 100 89 (83, 95) 85 (79, 92) 100 89 (83, 94) 83 (76, 90) 100 84 (77, 90) 86 (80, 93) 

Admission 
Status 100 85 (78, 91) 82 (75, 89) 100 94 (89, 98) 85 (78, 92) 100 75 (68, 83) 81 (74, 87) 
Intubation 
Status 100 87 (77, 96) 78 (66, 90) 100 90 (78, 100) 80 (65, 93) 100 86 (76, 94) 78 (66, 89) 

Death 100 78 (65, 90) 66 (51, 80) 100 100 (100, 100) 86 (70, 100) 100 74 (61, 85) 62 (48, 75) 
D. F1 Score 

Severity 
Score 81 84 (79, 89) 81 (76, 87) 83 90 (86, 94) 84 (79, 89) 80 79 (73, 85) 80 (74, 85) 
Admission 
Status 86 85 (80, 89) 83 (77, 88) 80 93 (89, 96) 84 (78, 89) 90 78 (73, 84) 82 (77, 87) 

Intubation 
Status 46 49 (39, 58) 47 (37, 57) 33 40 (29, 50) 38 (27, 49) 51 53 (43, 61) 51 (41, 60) 

Death 41 41 (31, 50) 36 (26, 46) 25 33 (23, 43) 31 (20, 41) 47 43 (33, 52) 39 (29, 48) 



Figure Legends 

Figure 1.​ Patient inclusion and exclusion criteria. COVID-19 = coronavirus disease 2019, CXR = chest 

radiograph, ED = emergency department, MRN = medical records number.  

Figure 2.​ ​(a) ​Pre-processing of radiographs and storage as HDF5 datasets. When images are stored as HDF5 

datasets, they do not require pre-processing (eg resizing, cropping, conversion to tensors) each time they are 

loaded to memory​.​ ​(b)​ Model architecture and training scheme. The two different training methods we 

conducted included computing the binary cross entropy (BCE) loss function with either the severity score (1 for 

severe, 0 for not severe) or the admission status (1 for admitted, 0 for not admitted in 30 days). For inference, 

the deep learning algorithm outputs a severity score (distinct from radiologist generated severity score) based 

on the chest radiograph image alone that is used to predict admission. To better predict intubation and death, 

initial clinical variables from the emergency department (ED) were added and retrained a model previously 

trained on chest radiograph image and the severity score. 

Figure 3.​ Receiver operating characteristic (ROC) curves of the test set based on two different training 

schemes. The areas under the ROC curves (AUCs) do not differ between training on severity score or 

admission status. The 95% confidence intervals for the AUCs are indicated by the brackets, shown as [lower 

bound, upper bound]. Operating point was selected for high sensitivity (recall), which was then used for 

accuracy and F1 score calculations. 

Figure 4.​ Precision versus recall curves for four prediction categories. Chest radiograph severity score and 

admission status were used for training and well balanced. Intubation status and mortalities were minority 

classes and not seen during training, thus producing poor precision (positive predictive value; PPV) and recall 

(sensitivity) performance. Nonetheless, both intubation and death predictions of this model performed better 

than a naive classifier that would predict a positive class each time. 

Figure 5.​ The area under the receiver operating characteristic curve (AUC) of intubation prediction from a 

model that incorporates clinical variables from electronic health records (EHR) to the model previously trained 

on chest radiographs and their severity score. The AUC for predicting intubation increased from 0.66 to 0.88 

and for predicting death increased from 0.59 to 0.82. At our selected operating point, the sensitivity remained 

high while achieving a good F1-score. Intervals indicate 95% CIs. Five patients who were “do not intubate” in 

the test set were excluded from intubation data analysis. 



Figure 6.​ Heatmaps generated from the last activation layer of the DenseNet-121 classifier algorithm. As 

expected, the patient's lower left (lower right on the image file) where the heart and the gastric bubble is 

located does not contribute significantly to the prediction output (probability score).  

 

  


